[ Pobierz całość w formacie PDF ]
[3] Szala J., Zawiślak S.: Application of computer simulation method for determination a
distribution type of construction parts fatigue life, Archive of Mechanical Engineering,
Vol. 37, 1990, pp. 145-167.
185
MECHANIK 7/2015
XIX Międzynarodowa Szkoła Komputerowego Wspomagania Projektowania, Wytwarzania i Eksploatacji
[4] Poirion F.: Monte Carlo approach for fatigue and damage calculations of nonlinear
dynamical systems, Conference GAMM 2001, Zurich 2001.
[5] Benjamin J.R., Cornell C.A.: Rachunek prawdopodobieństwa, statystyka matematyczna
i teoria decyzji dla inżynierów, WNT, Warszawa 1977.
[6] Bogdanoff J.L., Kozin F.: Probabilistic Models of Cumulative Damage, John Wiley
& Sons, New York 1985.
[7] Drewniak J.: Probabilistyczny model obliczeniowy trwałości zmęczeniowej elementów
i zespołów maszyn, Wydawnictwo Filii PA Bielsko-Biała, 1992.
[8] Valor A. et al.: Markov chain models for stochastic modelling of pitting corrosion,
Mathematical Problems in Engineering, 2013.
[9] Hong H.P.: Application of the stochastic process to pitting corrosion, 1999.
[10] Brenna A., Ormellese M., Lazzari L.: Probabilistic model based on Markov chain for
the assessment of localized corrosion of stainless steel, Conference Corrosion, Texas
2014.
[11] Mardia K.V. et al.: Markov chain Monte Carlo implementation of rock fracture
modeling, Math. Geol, 2007, pp. 355-381.
[12] Chandra T. et al.: A Markov chain fracture model for inter granular propagation in
polycrystalline materials, Advanced Material Research, 2010, pp. 29-34.
[13] Bolanos-Rodriguez E. et al.: Modelling based on Markov chains for evaluation of
pitting corrosion in buried pipelines carrying gas, 219th ECS Meeting, 2011.
[14] Caleyo F. et al.: Markov chain modelling of pitting corrosion in underground pipelines,
Corrosion Science 51, 2009, pp. 2197-2207.
[15] Hojdys L.: Numeryczna analiza procesu zmęczenia zębów kół walcowych, praca
magisterska, ATH Bielsko-Biała, 2013.
[16] Howard R.A.: Dynamic Probabilistic Systems, Vol. I, John Wiley & Sons, New York
1971.
[17] Castillo E., Ramos A., Koller R.: A critical comparison of two models for assessment of
fatigue data, International Journal of fatigue, 30, 2008.
[18] Ganesan R.: A data-driven stochastic approach to model and analyze test data on
fatigue response, Computers and structures, 76, 2000.
[19] Iosifescu M.: Skończone procesy Markowa i ich zastosowanie, PWN, Warszawa 1988.
[20] Paramanov Y., Andersons J.: Markov model for analyzing the residual static strength of
a fiber-reinforced composites, Mechanics of composite materials, 44, 2008.
[21] Rowatt J.D.: Application of Markov Chains to the Critical Element Model for
Determining the Fatigue Life of Composites, Rice University, 1995.
[22] Sutherland H.: On the Fatigue Analysis of Wind Turbines, Sandia National
Laboratories, 1999.
[23] Tikhonenko O. Matalytski M.: Procesy stochastyczne, Akademicka oficyna
wydawnicza Exit, 2011.
[24] Wei B., Johnson S., Haj-Ali R.: A stochastic fatigue damage method for composite
materials based on Markov chains and infrared thermography, International Journal of
Fatigue, 32, 2010.
[25] Wu W.F., Ni C.C: Probabilistic models of fatigue crack propagation and their
experimental verification, Probabilistic Engineering Mechanics, 19, 2004.
186
[ Pobierz całość w formacie PDF ]